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ABSTRACT
This paper describes an experimental embedding of Python
into DrScheme. The core of the system is a compiler, which
translates Python programs into equivalent MzScheme pro-
grams, and a runtime system to model the Python environ-
ment. The generated MzScheme code may be evaluated or
used by DrScheme tools, giving Python programmers ac-
cess to the DrScheme development suite while writing in
their favorite language, and giving DrScheme programmers
access to Python. While the compiler still has limitations
and poor performance, its development gives valuable in-
sights into the kind of problems one faces when embedding
a real-world language like Python in DrScheme.

1. INTRODUCTION
The Python programming language [13] is a descendant of
the ABC programming language, which was a teaching lan-
guage created by Guido van Rossum in the early 1980s. It
includes a sizeable standard library and powerful primitive
data types. It has three major interpreters: CPython [14],
currently the most widely used interpreter, is implemented
in the C language; another Python interpreter, Jython [11],
is written in Java; Python has also been ported to .NET [9].

MzScheme [8] is an interpreter for the PLT Scheme pro-
gramming language [7], which is a dialect of the Scheme lan-
guage [10]. MzScheme compiles syntactically valid programs
into an internal bytecode representation before evaluation.
MrEd [6] is a graphical user interface toolkit that extends
PLT Scheme and works uniformly across several platforms
(Windows, Mac OS X, and the X Window System.) Origi-
nally meant for Scheme, DrScheme [5] is an integrated de-
velopment environment (IDE) based on MzScheme—it is a
MrEd application—with support for embedding third-party
extensions. DrScheme provides developers with useful and
modular development tools, such as syntax or flow analyz-
ers. Because MzScheme’s syntax system includes precise
source information, any reference by a development tool to
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Figure 1: DrScheme language selection menu

such data can be mapped back to a reference to the original
program text.

DrScheme is thus no longer just a development environment
for Scheme. It can now potentially play the role of a program
development environment for any language, which users can
select from a menu (figure 1). When using any language
from within the IDE, the program developer may use Dr-
Scheme’s development tools, such as Syntax Check, which
checks a program’s syntax and highlights its bindings (fig-
ure 2), or MrFlow, which analyses a program’s possible flow
of values (MrFlow is still under development though). Also,
any new tool added to the DrScheme IDE is supposed to
work automatically with all the languages that DrScheme
supports (figure 2).



Figure 2: Evaluation and Syntax Check for Scheme and Python

To support a new language, however, DrScheme needs a
translator for programs written in that language. In the case
of adding Python support to DrScheme, this is the task of
the Python-to-Scheme compiler described in this paper. The
compiler is packaged as a DrScheme language tool, thus in-
troducing Python as a language in DrScheme’s list of choices
(figure 1).

The compiler was created as an experiment in porting a lan-
guage like Python to DrScheme. With Python available as
a DrScheme language, Python programmers can use the Dr-
Scheme IDE and its accompanying tools to develop Python
programs. It also gives Scheme programmers access to the
large amount of Python code available on the Internet. The
compiler still suffers from several limitations though, pri-
marily relating to the runtime support. The performance
of the generated code is also currently poor compared to
CPython. While we expect some of the limitations to dis-
appear in the future and the performance to get better as
the generated code is optimized, we already consider the ex-
periment to be successful for the insights we have gained
about the problem of embedding a real-world language into
DrScheme.

Section 2 of this paper presents the overall architecture of
the compiler system, including details about code genera-
tion and the runtime system. Section 3 describes the current
status of the compiler, gives an idea of the current perfor-
mance of the generated MzScheme code, and evaluates the
successfulness of the whole experiment. Section 4 relates
other works to this paper. Section 5 lists some of the major
parts that still need to be worked on, and we conclude in
section 6.

2. ARCHITECTURE
This section describes the architecture of the Python-to-
Scheme compiler. The compiler has a conventional structure
with three major components: the front-end, which uses a
lexical analyzer to read program text and a parser to check
the syntax of the tokens produced by the scanner; the back-
end, which is a code generator using the parser’s output to
create MzScheme code; and the runtime system, which pro-

vides low-level functions that the generated code makes use
of. This section delineates these three components. Sec-
tion 2.1 describes the scanner and parser; section 2.2, the
code generator; and section 2.3, the runtime system.

Note that, even though CPython is based on a virtual ma-
chine, we did not consider compiling CPython byte code
instead of compiling Python source code. While compiling
CPython byte code to Scheme is certainly doable, the se-
mantic mismatch between the stack-based byte code and
Scheme is big enough that DrScheme’s tools would most
likely give poor results on byte code (in addition to the
problem of mapping those results for the byte code back
into results for Python source code, since, unlike DrScheme,
CPython does not preserve in the byte code much informa-
tion about the source code to byte code transformation).

2.1 Lexical and Syntax Analysis
Python program text is read by the lexical analyzer and
transformed into tokens, including special tokens represent-
ing indentation changes in the Python source code. From
this stream of tokens the parser generates abstract syntax
trees (ASTs) in the form of MzScheme objects, with one
class for each Python syntactic category. The indentation
tokens are used by the parser to determine the extent of
code blocks. The list of generated ASTs is then passed on
to the code generator.

2.2 Code Generation
The code generator produces Scheme code from a list of
ASTs by doing a simple tree traversal and emitting equiva-
lent MzScheme code. The following subsections explain the
generation of the MzScheme code for the most important
parts of the Python language. They also describe some of
the problems we encountered.

2.2.1 Function De£nitions
Python functions have a few features not present in Scheme
functions. Tuple variables are automatically unpacked, ar-
guments may be specified by keyword instead of position,
and those arguments left over (for which no key matches)



are placed in a special dictionary argument. These fea-
tures are implemented using a combination of compile-time
rewriting (e.g. for arguments specified by keywords) and
runtime processing (e.g. conversion of leftover arguments
into a Python tuple). Default arguments are not yet im-
plemented. Python’s return statement is emulated using
MzScheme escape continuations. For example the following
small Python function:

def f(x, y, z, *rest, **dict):

print dict

is transformed into the following Scheme definition:

(namespace-set-variable-value! ’f

(procedure->py-function%

(opt-lambda (dict x y z . rest)

(let ([rest (list->py-tuple% rest)])

(call-with-escape-continuation

(lambda (return10846)

(py-print #f (list dict))

py-none))))

’f (list ’x ’y ’z) null ’rest ’dict))

2.2.2 Function Applications
Functions are applied through py-call. A function object
is passed as the first argument to py-call, followed by a
list of supplied positional arguments (in the order they were
supplied), and a list of supplied keyword arguments (also
in order). So, for example, the function call add_one(2)
becomes:

(py-call add_one

(list (number->py-number% 2))

null)

The py-call function extracts from the add_one function
object a Scheme procedure that simulates the behavior of
the Python function when it is applied to its simulated
Python arguments by py-call.

2.2.3 Class De£nitions
In Python classes are also objects. A given class has a unique
object representing it and all instances of that class use a
reference to that unique class object to describe the class
they belong to. The class of class objects (i.e. the type of
an object representing a type) is the type special object /
class. The type of type is type itself (i.e. type is an object
whose class is represented by the object itself). With this in
mind consider this small Python class, which inherits from
two classes A and B that are not shown here:

class C(A, B):

some_static_field = 7

another_static_field = 3

def m(this, x):

return C.some_static_field + x

In this class C, three members are defined: the two static
fields and the method m, which adds the value of the first
static field to its argument. This class is converted by the
code generator into a static method call to the __call__

method of the type class (which is also a callable object).
This call returns a new class object which is then assigned
to the variable C:

(namespace-set-variable-value! ’C

(python-method-call type ’__call__

(list

(symbol->py-string% ’C)

(list->py-tuple% (list A B))

(list

(lambda (this-class)

(list ’some_static_field

(number->py-number% 7)))

(lambda (this-class)

(list

’another_static_field

(let-values

([(some_static_field)

(values (python-get-member

this-class

’some_static_field #f))])

(number->py-number% 3))))

(lambda (this-class)

(list

’m

(procedure->py-function%

(opt-lambda (this x)

(call/ec

(lambda (return)

(return

(python-method-call

(python-get-attribute

C ’some_static_field)

’__add__

(list x)))

py-none)))

’m (list ’this ’x) null #f #f))))))))

All instances of the class C then refer to that new class object
to represent the class they belong to.

At class creation time member fields (but not methods) have
access to the previously created fields and methods. So for
example some_static_field must be bound to its value
when evaluating the expression used to initialize the field
another_static_field in the class C above. To emulate
this the generated Scheme code that initializes a field must
always be a function that receives as value for its this-class
argument the class object currently being created, to allow
for the extraction of already created fields and methods from
that class object if necessary.

Note that a class’s type is different from a class’s parent
classes. The parents of a class (the objects A and B repre-
senting the parent classes of C in the example above) can
be accessed through the __bases__ field of a class. The
__class__ field of an “ordinary” object refers to the object
representing that object’s class while the __class__ field of
an object representing a class refers to the type object (fig-
ure 3). This second case includes the __class__ field of the
top object class, even though type is a subclass of object.
The class of an object can be changed at runtime by simply
assigning a new value to the __class__ field of that object.

The Python object system also allows fields and methods to
be added to an object at runtime. Since classes are them-
selves objects, fields and methods can be added at runtime



Figure 3: A simple Python class

to a class, which is then reflected in all the existing instances
of that class.

Since the MzScheme object system segregates classes and
objects, does not allow either to be modified at runtime, and
does not support multiple inheritance, the Python object
system could not be mapped to the MzScheme one. All
Python object are therefore emulated using MzScheme hash
tables (which is also what they are internally in CPython).

2.2.4 Variable Assignments
Identifiers are normally bound either at the top level or in-
side functions. Identifiers from imported modules are bound
differently (see section 2.2.5).

Assignments at the top level are translated into defines for
first assignments or set!s for mutative assignments. In the
following Python listing, the first line defines x, while the
second line mutates x and defines y as the same value 2

(which is only evaluated once).

x = 1

x = y = 2

Identifiers defined inside functions are bound using let. For
example, consider the following function that uses a single
variable, x, defined on the fly.

def f():

x = 1

Its body is translated into this Scheme equivalent (omitting
the escape continuation code used to handle possible return
statements):

(namespace-set-variable-value! ’f

(opt-lambda ()

(let ([x (void)])

(let ([rhs1718 (number->py-number% 1)])

(set! x rhs1718))

py-none)))

As a current shortcoming of the compiler, all variables de-
fined throughout the body of a Python function are defined
at once in a single let at the start of the corresponding
Scheme function. To ensure that using a variable before it
is defined still results in a runtime error the let-bound vari-
ables have to be given the value void. While this works

fine in practice, it does not provide for good error messages
though. This will be fixed in the future (see section 5).

When a global statement names any variable, the named
variable is simply omitted from the Scheme function’s initial
let bindings, thereby allowing assignments to said variable
to mutate an identifier existing in an outer scope (if it exists,
otherwise a runtime error occurs).

2.2.5 Importing Modules
Unlike MzScheme modules, Python modules allow assign-
ments to identifiers defined in other modules. Python also
allows cycles between modules. It was therefore not possi-
ble to map Python modules to MzScheme modules. Rather
Python modules are emulated using MzScheme namespaces.

In order to import a Python module at runtime—and, in
fact, to initialize the environment at startup—the runtime
system creates a new MzScheme namespace and populates it
with the built-in Python library. The runtime system then
compiles the requested module and evaluates it in this new
namespace. Finally, new bindings for the necessary values
are copied from that namespace into the original names-
pace of the module importer. For example, when evaluating
the statement import popen from os, only the binding for
popen is copied into the original namespace from the new
one created to compile the os module. A module is always
only compiled once, even if it is imported multiple times.

Since import m only copies over a reference to module m

and its namespace, references to values in module m, such as
m.x, are shared between modules importing m. However, a
statement of the form from m import x copies the value of
x into the current module namespace. There is no sharing
of x between modules then.

2.3 The Runtime System
The Python runtime system can be divided into two parts:
modules that are written in Python and modules that are
written in C. The code generation described above can be
applied to both user code and the parts of the Python run-
time that are written in Python. This means that Python
programmers can use these runtime modules as they would
normally do. This also means that Scheme programmers
have access to the parts of the Python runtime written in
Python by simply invoking the compiler on them and eval-
uating the resulting MzScheme code (although there is cur-
rently no simple API provided to do that).

The C-level modules of the Python runtime can be dealt
with in several ways. Some of these modules use C macros
to abstract the runtime code over the actual internal repre-
sentation of Python objects. These modules can therefore
in principle be directly reused by modifying the appropriate
C macros to work on MzScheme values instead of Python
objects. The use of C macros is not systematic throughout
the Python runtime code though, so some changes to the
code are required to make it completely abstract and there
does not seem to be any simple automated way to do this.
As an experiment the Python String class code and macros
were modified in this manner and the class is now usable by
the DrScheme Python programmer.



For the Python modules written in C that are poorly, or not
at all, abstracted over the representation of Python object,
the most elegant solution would be to convince the CPython
developers to rewrite these core modules in a more abstract
way using C macros, thereby allowing the two systems to
share that runtime code. We do not expect this to happen in
the foreseeable future though, so one alternative solution is
to replace these C modules with equivalent MzScheme code.
Calls to Python runtime functions can be transformed by
the code generator into calls to MzScheme functions when
the Python functions have direct MzScheme equivalents (e.g.
printf). Python functions that do not have any direct Mz-
Scheme equivalent must be rewritten from scratch, though
this brings up the problem of maintaining consistency with
the CPython runtime as it changes. We are currently exam-
ining the Python C code to determine how much of it can be
reused and how much of it has to be replaced. Another pos-
sible solution is to use an automated tool like SWIG [3] to
transform the Python C modules into MzScheme extensions.
The code generator can then replace calls to the original C
modules by MzScheme function calls to the SWIG-generated
interface. This approach is also under investigation.

Note that there is currently no way for the Python program-
mer using DrScheme to access the underlying MzScheme
runtime. Giving such access is easy to do through the use of
a Python module naming convention that can be treated as
a special case by the code generator (e.g. import mzscheme

or import ... from mzscheme).

3. STATUS AND EVALUATION
Most of the Python language has been implemented, with
the exception of the yield and exec statements, and of de-
fault function parameters (as explained in section 2.2.1).
The Python eval function has not been implemented yet ei-
ther but since import is implemented and since it evaluates
entire Python files, the necessary machinery to implement
both exec and eval is already available. There is no plan to
support Unicode strings, at least as long as MzScheme itself
does not support them. There is also currently no support
for documentation strings. As described in section 2.3 ac-
cess to the parts of the Python runtime system written in C
is still a problem.

Because Python features like modules or objects have very
dynamic behaviors and therefore must be emulated using
MzScheme namespaces and hash tables (respectively), the
code generated by our system is in general significantly big-
ger than the original Python code. See for example the sim-
ple Python class from section 2.2.3 that expands into about
30 lines of MzScheme code. In general a growth factor of
about three in the number of lines of code can be expected.
The generated code also involves a large number of calls to
internal runtime functions to do anything from continually
converting MzScheme values into Python values and back
(or more precisely into the internal representation of Python
values our system is using and back) to simulating a call to
the __call__ method of the type class object. Finally, each
module variable, class field or method access potentially in-
volves multiple namespace or hashtable lookups done at the
Scheme level. As a result the performance of the result-
ing code is poor compared to the performance of the origi-
nal Python code running on CPython. While no systematic

performance measurement has been made yet, anecdotal ev-
idence on a few test programs shows a slowdown by around
three orders of magnitude.

Using DrScheme tools on Python programs has given mixed
results. Syntax Check, which checks a program’s syntax
and highlights its bindings using arrows, has been success-
fully used on Python programs without requiring any change
to the tool’s code (figure 2). Some features of the Python
language make Syntax Check slightly less useful for Python
programs than for Scheme programs though. For example,
since an object can change class at runtime, it is not possible
to relate a given method call to a specific method definition
using just a simple syntactic analysis of the program. This
is a limitation inherent to the Python language though, not
to Syntax Check.

A tool like MrFlow, which statically analyzes a program to
predict its possible runtime flow of values, could potentially
be able to relate a given method call to a given method
definition. While MrFlow can already be used on Python
programs without any change, it does not currently com-
pute any meaningful information: MrFlow does not know
yet how to analyze several of the MzScheme features used
in the generated code (e.g. namespaces). Even once this
problem is solved, MrFlow will probably still compute poor
results. Since all Python classes and object are emulated
using MzScheme hash tables, and since value flow analyses
are unable to differentiate between runtime hash table keys,
MrFlow will compute extremely conservative results for all
the object oriented aspects of a Python program. In general
there is probably no easy way to statically and efficiently
analyze the generated code. In fact there is probably no
way to do good value-flow analysis of Python programs at
all given Python’s extremely dynamic notion of objects and
modules.

Another DrScheme tool, the Stepper, does not currently
work with Python programs. The Stepper allows a program-
mer to run a program interactively step by step. To work
with Python the Stepper would need to have access to a de-
compiler, a program capable of transforming a generated but
reduced MzScheme program back into an equivalent Python
program. Creating such an decompiler is a non-trivial task
given the complexity of the code generated by the compiler.

Due to the difficulties encountered with the Python run-
time and due to the current poor performance of the code
generated, the compiler should be considered to be still at
an experimental stage. The fact that most of the Python
language has been implemented and that a DrScheme tool
like Syntax Check can be used on Python programs without
any change is encouraging though. The experience that has
been gained in porting a real-world language to DrScheme
is also valuable. We therefore consider the experiment to be
successful, even if a lot of work still remains to be done.

4. RELATED WORK
Over the past years there have been several discussions [1,
2] on Guile related mailing lists about creating a Python
to Guile translator. A web site [4] for such a project even
exists, but does not contain any software. Richard Stallman
indicated [12] that a person has been working on “finish-



ing up a translator from Python to Scheme” but no other
information on that project could be found.

Jython, built on top of the Java Virtual Machine, is another
implementation of the Python language. The implemen-
tation is mature and gives users access to the huge Java
runtime. All the Python modules implemented in C in
CPython were simply re-implemented in Java. Maintain-
ing the CPython and Jython runtimes synchronous requires
constant work though.

Python for .NET is an exploratory implementation of the
Python language for the .NET framework and has there-
fore severe limitations (e.g. no multiple inheritance). Like
Jython it gives access to the underlying runtime system
and libraries. Only a handful of modules from the Python
runtime have been implemented. Among those, the ones
written in Python became accessible to the user after be-
ing modified to fit within the more limited Python language
implemented by the interpreter. A few modules originally
written in C in CPython were re-implemented using the C#
language.

Compilers for other languages beside Python are being de-
veloped for DrScheme. Matthew Flatt developed an im-
plementation of the Algol60 language as a proof of con-
cept. David Goldberg is currently working on a compiler
for the OCaml language called Dromedary, and Kathy Gray
is working on a DrScheme embedding of Java called Profes-
sorJ.

5. FUTURE WORK
In its present state the biggest limitation of the compiler is
the lack of access to the C-level Python runtime. As such
we are currently focusing most of our development efforts in
that area, investigating several strategies to overcome this
problem (see section 2.3).

While the performance of the generated code is poor, no at-
tempt has yet been made at profiling it. The performance
will be better once the code generator has been modified
to create more optimized code, although it is unclear to
us at this stage how much improvement can be expected
in this regard. The need to simulate some of the main
Python features (e.g. the object and module systems) and
the large number of runtime function calls and lookups in-
volved means than the generated code will probably never
have a performance level on par with the CPython system
although an acceptable level should be within reach.

As described in section 3, a few parts of the Python lan-
guage remain to be implemented. We do not anticipate any
problem with these. There is also a general need for better
error messages and a more complete test suite.

6. CONCLUSION
A new implementation of the Python language is now avail-
able, based on the MzScheme interpreter and the DrScheme
IDE. While most of the core language has been implemented
a lot of work remains to be done on the implementation of
the Python runtime and on improving the performance. De-
spite this Python developers can already benefit from some
of DrScheme’s development tools to write Python code, and

Scheme programmers start now to have access to the large
number of existing Python libraries.
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